Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

نویسندگان

  • Cai Liang
  • Chinthaka P. Gooneratne
  • Qing Xiao Wang
  • Yang Liu
  • Yogesh Gianchandani
  • Jurgen Kosel
چکیده

This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications

Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, i...

متن کامل

ساخت و بررسی نمونه‌های حجمی و لایه نازک فریت استرانسیوم

  In this article, bulk and thin film samples of strontium ferrite have been studied. Due to the high electrical resistivity in strontium ferrite, energy loss due to eddy currents reduces and because of this, it can be used in high frequency magnetic circuits. On the other hand, strontium ferrite has attracted much attention as a permanent magnet. At first, we study the preparation process of b...

متن کامل

Enhanced giant magnetoimpedance in heterogeneous nanobrush

A highly sensitive and large working range giant magnetoimpedance (GMI) effect is found in the novel nanostructure: nanobrush. The nanostructure is composed of a soft magnetic nanofilm and a nanowire array, respectively fabricated by RF magnetron sputtering and electrochemical deposition. The optimal GMI ratio of nanobrush is promoted to more than 250%, higher than the pure FeNi film and some s...

متن کامل

Dry and Wet Wear Characteristic of TiO2 Thin Film Prepared by Magnetic Sputtering in Ringer Solution

In this research, a thin film of TiO2 was applied on AZ91D using the method of magnetic sputtering. Microstructure investigations were done using field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). Wear resistance for the coating was investigated using the pin on the disk in the form of dry and in the Ringer's solution. After this test, the worn surface of the sampl...

متن کامل

Development of a Magnetostrictive FeNi Coated Surface Acoustic Wave Current Sensor

A magnetostrictive FeNi-coated surface acoustic wave (SAW)-based current sensor was proposed in this work. The weak remanence and hysteresis effect of the FeNi itself contributes to suppress the asymmetry in sensor response at increasing and decreasing current. The sensor response was simulated by solving the coupled electromechanical field equation in layered structure considering the magnetos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014